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Biological and environmental contrasts between aquatic and
terrestrial systems have hindered analyses of community and
ecosystem structure across Earth's diverse habitats. Ecological
stoichiometry1,2 provides an integrative approach for such ana-
lyses, as all organisms are composed of the same major elements
(C, N, P) whose balance affects production, nutrient cycling, and
food-web dynamics3,4. Here we show both similarities and differ-
ences in the C:N:P ratios of primary producers (autotrophs) and
invertebrate primary consumers (herbivores) across habitats.
Terrestrial food webs are built on an extremely nutrient-poor
autotroph base with C:P and C:N ratios higher than in lake
particulate matter, although the N:P ratios are nearly identical.
Terrestrial herbivores (insects) and their freshwater counterparts
(zooplankton) are nutrient-rich and indistinguishable in C:N:P
stoichiometry. In both lakes and terrestrial systems, herbivores
should have low growth ef®ciencies (10±30%) when consuming
autotrophs with typical carbon-to-nutrient ratios. These stoichio-
metric constraints on herbivore growth appear to be qualitatively
similar and widespread in both environments.

The concept of a food web has been a central organizing theme in
ecology ever since its classical development5. Ecologists are now
actively seeking ways to integrate interspeci®c interactions in food
webs with the functional processes of energy ¯ow and material
cycling6±9. Here we use the perspective of ecological stoichiometry
to analyse factors affecting energy and material ¯ows at the auto-
troph±herbivore interface in terrestrial and freshwater ecosystems.
Our analysis quanti®es important divergences and convergences in
the stoichiometric structure at the base of food webs in these diverse
habitats.

The base of terrestrial and freshwater food webs differed dramati-
cally in C:nutrient ratios (Fig. 1). Mean C:N and C:P ratios of the
foliage of terrestrial autotrophs were more than threefold higher
than for freshwater seston (lake particulate matter, generally domi-
nated by phytoplankton) (t-tests, P , 0.0001), indicative of the
in¯uence of nutrient-poor, C-rich structural carbohydrates in
vascular plant tissue. Thus, a generalist terrestrial herbivore con-
suming a plant with the average plant C:nutrient ratio would
acquire less than a third as many nutrient atoms per C atom
ingested as would a freshwater zooplankter feeding on average
seston. Furthermore, C:N ratios varied more in the terrestrial
data: the coef®cient of variation (c.v.) of terrestrial autotroph
biomass was 0.64 but only 0.29 for freshwater seston. Whereas
autotroph C:nutrient ratios diverged widely between terrestrial and
freshwater ecosystems, autotroph N:P ratios did not (Fig. 1; 28 for
terrestrial foliage versus 30 for freshwater seston; t-test, P = 0.65).
Furthermore, the biomass N:P ratio did not vary as greatly between
terrestrial and freshwater habitats as did the C:N ratio (c.v. of N:P
was 0.54 versus 0.53 for C:N). Thus, despite major differences in the
size, complexity and taxonomic af®liation of autotrophic organisms
in terrestrial and freshwater realms, patterns of biomass composi-
tion for N and P were very similar. Given the prevailing view that in
general primary production is limited by P in freshwater ecosystems
but by N in terrestrial systems10, the coincidence of autotroph
biomass N:P in terrestrial and freshwater systems is intriguing
(Fig. 1). This similarity may indicate that the prevalence of
N-limitation in lakes is greater than previously thought11 or that
P-limitation in terrestrial systems is more widespread than generally
acknowledged. Or, it is possible that biomass N:P values indicative
of N versus P limitation differ for freshwater and terrestrial auto-
trophs, but this is not supported by recent investigations in wetland
vegetation12.

³ Present address: St Johns River Water Management District, Palatka, Florida 32177, USA.
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Figure 1 Frequency histograms summarizing C:N:P stoichiometry in autotrophs at the

base of terrestrial and freshwater food webs. All stoichiometric ratios are atomic.
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Like autotrophs, metazoan herbivores in terrestrial and fresh-
water habitats differ considerably in size and taxonomic af®liation.
Despite these contrasts, we found that herbivorous insects and
zooplankton had similar mean C:N, C:P and N:P ratios in the two
habitat types (Fig. 2; t-tests, P . 0.17). In both groups C:P ratios
varied more than C:N ratios among taxa, consistent with the relative
constancy of N content but wide variation of P content in major
biological molecules (that is, N-rich proteins versus N- and P-rich
nucleic acids) and structures2. Associations of body C:N:P with body
growth rate due to the necessity of increased allocation of
resources to P-rich ribosomal RNA2 have been documented in
planktonic crustaceans2,13. We show that as much variation in body
C:N:P ratios exists among insect herbivores as among zooplankton.
However, connections between patterns of elemental and biochemi-
cal composition and growth rate in insects remain largely unexplored.

The C:N and C:P ratios of the herbivores were considerably lower
than those of their potential foods, especially in terrestrial systems
where C:nutrient ratios of foliage exceeded insect C:nutrient ratios
by more than 5- to 10-fold on average. This indicates that stoichio-
metric food quality for herbivores is generally poor in lakes and
especially in terrestrial habitats. The extreme imbalance in C:nutri-
ent ratios between plant and insect biomass may contribute to the
prevalence of feeding specialization among insect herbivores14,15, in
which insects focus their consumption on those plant species,
tissues, or time-frames for which food nutrient content is more
suitable. In contrast, pelagic herbivores in lakes appear to face
less daunting constraints and may thus succeed with relatively
indiscriminate, ®lter-feeding modes of nutrition. Given elevated
C:nutrient ratios, which element (N or P) is likely to be in shorter
supply relative to herbivore needs? Mean body N:P of herbivore taxa
(,24) was lower than that of average autotroph biomass (,30;

t-test, P = 0.02), indicating that, on average, N is in excess relative to
P for herbivores in these systems. Yet, because herbivore and
autotroph N:P vary among species, the identity of the potentially
limiting constituent will depend on the relative N:P of particular
resource±herbivore combinations. However, the fact that plant N:P
was signi®cantly higher than insect N:P suggests that greater
attention should be paid to the potential for inadequate P intake
for herbivores in terrestrial ecosystems, where ecologists have
focused primarily on N16.

Our data clearly show that the stoichiometry of the autotroph±
herbivore interaction is greatly unbalanced in freshwater and
especially terrestrial ecosystems. For example, in freshwater zoo-
plankton, Daphnia are relatively P-rich with body C:P ratios of
about 80:14. According to stoichiometric food quality models and
experimental investigations3,17,18, Daphnia face potential P-de®-
ciency when food C:P exceeds ,250, a situation that appears
commonplace in lakes (Fig. 1). Our data indicate that terrestrial
herbivores with a P-rich lifestyle similar to Daphnia's encounter
even more daunting constraints: only 6% of the autotroph species
sampled in our data set had plant C:P less than 250:1. Stoichio-
metric theory predicts that homeostatic herbivores consuming
elementally imbalanced food will exhibit strongly diminished
ef®ciency of conversion of ingested carbon into new biomass (for
example, reduced `̀ gross growth ef®ciency'', GGEC). Indeed, exam-
ples of terrestrial and freshwater herbivores (caterpillars of Pieris
rapae19 and Daphnia magna20, respectively) show the reduction in
GGEC with food C:nutrient ratio (Fig. 3) predicted by stoichio-
metric food quality models17,18. Comparison of these responses with
the histograms in Fig. 1 indicates that such herbivores would exhibit
low GGEC when consuming average autotroph biomass in their
respective habitats (30% for Daphnia, ,10% for Pieris). Given the
possible connection between animal C:N:P ratios and growth rate2,
such food quality limitations may fall disproportionately on fast-
growing `outbreak' herbivores that require nutrient-rich resources
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Figure 2 Frequency histograms summarizing C:N:P stoichiometry of invertebrate

herbivores in terrestrial and freshwater habitats. All stoichiometric ratios are atomic.
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caterpillars, Pieris rapae19 (terrestrial) and the zooplankter Daphnia magna20 (freshwater).

Data on GGEC (proportion of ingested carbon successfully converted to body growth) and

food nutrient content were extracted from the cited studies. Percentage N in the caterpillar
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line indicates the mean value and shading indicates the 10% and 90% limits from the

frequency distribution (Fig. 1).
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to rapidly build nutrient-rich bodies. In general, our analyses show
large differences in C:nutrient balance across the autotroph±herbi-
vore interface in freshwater and terrestrial ecosystem that may have
important effects on the intensity of herbivory21,22 and the fate of
organic matter23 in diverse ecosystems. However, terrestrial and
aquatic food webs share great similarity in the N:P stoichiometry of
autotroph±grazer interactions. M

Methods
Autotrophs

We supplemented the literature with unpublished data to develop databases documenting
the C:N:P stoichiometry of terrestrial plants and suspended particulate matter (`seston') in
lakes. We restricted our terrestrial autotroph database to elemental analyses of foliage
collected under ®eld conditions, excluding agricultural and greenhouse studies. Multiple
data for a single species were averaged before analysis. Terrestrial data were most frequently
reported in percentage dry weight terms (% N, % P); when % C values were not reported
we converted % N and % P data to C:N and C:P ratios using the mean percentage C of
reported values (46.4% C). To evaluate whether this procedure introduced any bias to
observed patterns in foliage C:P and C:N, we calculated the mean and variability
(coef®cient of variation, c.v.) of the C:N and C:P ratios for that subset of species for which
% C, % N, and % P were all reported (n = 44). The mean and c.v. of C:N for this limited
data set were 35.9 and 0.57, respectively, and 805 and 0.78 for C:P. These values are
reasonably close to those for the remaining entries (for C:N, mean was 36.5, c.v. was 0.64;
for C:P, mean was 990, c.v. was 0.75); thus, using a ®xed percentage C value to estimate C:N
and C:P probably did not in¯uence the major patterns observed. A total of 501 plant
species from 358 genera, 107 families, 62 orders, 20 subclasses, 8 classes and 5 divisions
were included. We assessed C:N:P stoichiometry at the base of freshwater pelagic food
webs by compiling a database of seston elemental composition in 226 lakes from published
and unpublished reports. Only data for surface waters during the summer growing season
were included; multiple observations during a year were averaged, and thus a `lake-year'
was the primary observation unit. Data were generally for lakes of small to moderate size
but information for several of the world's great lakes was also included. Lakes were
primarily located in North America but seston data for lakes in Europe, Africa and Asia
were also obtained. Seston contains a mixture of living algae but also bacteria, protozoa
and detritus and forms the food base for relatively indiscriminate planktonic ®lter-feeders.
Although the contribution of these different components probably differs among lakes,
various data indicate that, in general, seston particles in strati®ed lakes are dominated by
phytoplankton biomass. For example, even in some lakes where seston C:P was high (and
thus the contribution of low-nutrient detritus might be thought relatively important),
algae contributed about 70% of total seston biomass (bacteria and protozoa contributed
,20% and ,5%, respectively, implying little in¯uence of detritus)24. Thus, the freshwater
and terrestrial data sets for `autotrophs' differ in that the terrestrial data involve
observations for particular plant species while the lake data correspond to a mixture of
particles, living and non-living. Finally, if different seston particles have substantially
different C:N:P ratios, bulk seston C:N:P measurements may not accurately quantify
actual stoichiometric food quality for particular herbivores that can discriminate among
particles, such as some calanoid copepods5.

Herbivores

Data for the C:N:P stoichiometry of terrestrial herbivorous insects and lake zooplankton
were compiled from published and unpublished sources. Multiple data for a single species
were averaged before analysis. As for terrestrial plants, when values of percentage C were
not given, data reported as % N and % P were converted to C:N and C:P ratios using the
mean percentage C value for the remainder of the herbivore database (48% C). We
followed the same procedure used in analyses of the foliage data to evaluate possible bias
introduced by assuming this ®xed percentage C value. However, data for few species
included all three parameters (% C, % N, % P); we thus con®ned our assessment of
possible biases to data on herbivore C:N. The mean and c.v. values of C:N for the data
subset with direct measurements of % C and % N (n = 67) were 5.9 and 0.21 whereas
values for entries for which the ®xed percentage C value was used (n = 97) were 6.7 and
0.28. Here again, using a ®xed value of percentage C to estimate C:N and C:P from % N
and % P probably did not unduly in¯uence the observed patterns. A total of 130 species of
insects from 93 genera, 40 families and 7 orders were included. By far, most insects
included were leaf-eating, though a minority were phloem-feeding herbivores (such as
aphids). Leaf-eaters and phloem-feeders did not differ in C:N:P ratios and therefore all
taxa were analysed together. Predatory zooplankton were excluded from the compilation
but several omnivorous taxa were retained. A total of 43 species of zooplankton from 23
genera, 12 families, 8 orders, 4 classes and 2 phyla were included. The majority of the taxa
were crustaceans (mainly branchiopods (`cladocera'), malacostracans and copepods) but
data for several rotifers were also compiled. All stoichiometric ratios were calculated on an
atomic basis. A complete summary of the data sets, including original citations, can be
obtained at http://www.nceas.ucsb.edu/ecostoichiometry.
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Chlorobenzenes are toxic, highly persistent and ubiquitously
distributed environmental contaminants that accumulate in the
food chain1. The only known microbial transformation of 1,2,3,5-
tetrachlorobenzene (TeCB) and higher chlorinated benzenes is
the reductive dechlorination to lower chlorinated benzenes under
anaerobic conditions observed with mixed bacterial cultures2±4.
The lower chlorinated benzenes can subsequently be mineralized
by aerobic bacteria. Here we describe the isolation of the oxygen-
sensitive strain CBDB1, a pure culture capable of reductive
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