
460 0169-5347/00/$ – see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0169-5347(00)01981-9 TREE vol. 15, no. 11 November 2000

REVIEWS

A t the dawn of modern ecol-
ogy, Charles S. Elton1 was
struck by the regularity by

which some northern mammal
populations fluctuate. The ‘lem-
ming cycle’ soon became a favorite
topic for population ecologists and
Elton himself argued that the study
of fluctuating (cyclic) populations
should be the cornerstone of ani-
mal ecology. Since this time, popu-
lation cycles have occupied a great
deal of both theoretical and empiri-
cal ecology2. Elton also noted that
the regular fluctuations of Canada
lynx (Lynx canadensis) and snow-
shoe hare (Lepus americanus) were
synchronized over large distances.
Eventually, this led the Australian
statistician Pat Moran3 to suggest
that the synchronization of popu-
lation fluctuations is possible if the
local populations share the same
density-dependent structure and
the same environmental variability
(Moran’s theorem; Box 1). Hence,
an interesting interplay should
exist between population demog-
raphy and random fluctuations in
the environment, thus affecting
vital rates of the population. There
is now increasing empirical evi-
dence, with a strong theoretical
underpinning, of such an inter-
play4–9. Traditionally, theoretical
population ecology has rested on
deterministic models of popu-
lations and communities. However, in 1972, Robert May10

introduced ecologists to a modern account of stochastic
processes. It was not until fast and inexpensive computers,
allowing numerical simulations, were on everybody’s desk
that the interest for random processes took off. This devel-
opment was fostered further by the growing interest in con-
servation biology (especially the extinction process) in the
1980s. Now, the time has come to review this development;
recent overviews also show the interest to do so11–14. In this
paper, we briefly review how mathematical statistical tools
have been used to elucidate how biological and stochastic
environmental processes are intertwined.

Population regulation
At the core of understanding population variability lies the
concept of population regulation. A commonly used defi-
nition15 is that a population is regulated if there is nega-
tive density-dependent feedback on population growth. At
sufficiently high densities, per capita deaths exceed per
capita births and the population declines; at lower den-
sities the reverse is true. This might seem trivial because no

population grows without bounds.
Nevertheless, this idea has been
challenged mainly, but not exclu-
sively, on empirical grounds16.
The argument is that, although
population growth cannot be
boundless, factors other than den-
sity dependence come into play
long before the regulatory process
takes place. Such ‘other factors’
are usually random abiotic (e.g.
weather) variations. Although
this debate on population regu-
lation might be outdated, it has
highlighted the inevitable, but
often forgotten, interplay between
environmental stochasticity and
endogenous density-dependent
processes. Thus, the point of de-
parture for understanding popu-
lation variability is to acknowledge
the mutual interaction of both
factors.

Single-population 
dynamics
A simple and general way of rep-
resenting the population renewal
process, including internal feed-
back and external variability is:

Nt 5 f(Nt21, εt)

Where N is the population density
at time t, εt represents environmen-
tal stochasticity (a random devi-
ate with zero mean), and f is a
(usually nonlinear) function map-

ping the density and environmental stochasticity to a
population size at time t 1 1. The function f can be made a
little more sophisticated and interesting by explicitly
including density dependence and time lags greater than
one. The usual approach of analysing such models in a gen-
eral way is to study the linear approximation of the models
(Box 2). Although most ecological processes are certainly
strongly nonlinear, it is probable that the system spends
most of its time near its steady state, where a linear
approximation is usually sufficiently accurate17. In a dis-
crete time model, such as Eqn 1, the parameters specifying
function f can be adjusted so that all the main types of
deterministic dynamics can be produced, ranging from
asymptotically stable dynamics to cycles and chaos15.
However, environmental stochasticity is never completely
absent and it can cause several interesting problems. For
example, it can mask deterministic dynamics completely,
making it difficult to pick up the endogenous signal from 
a time series15, and it can also reinforce the underlying
dynamics, making dampened oscillations persist as regu-
lar fluctuations (cycles)15,18–20.
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The environmental ‘noise’ itself might also have prop-
erties that affect the resulting dynamics. In recent years,
temporally autocorrelated (‘coloured’) noise has received
a lot of attention because it is believed to be a better
description of the actual environmental variability21,22.
There is an intricate and important interplay between the
properties of the environmental stochasticity and the
resulting population time series23. The population sub-
jected to noise is a filter of the noise signal24. For example,
white environmental noise usually results in a red popu-
lation time series25 (the ‘out signal’), but the details
depend on which part of the community is affected most
by the stochasticity, as well as the feedback (density-
dependent) structure of the community in which the popu-
lation is embedded26–30. The problem with the interaction
between environmental variability and the density-depend-
ent structure of the population is further illustrated when
one attempts to reconstruct the basic population features
from the time series. Roughgarden24, and later Royama31,
showed that a time series from a population with a lagged
density-dependent structure (i.e. the density at time t is
dependent on the density both at time t 2 1 and t 2 2) and
subject to white noise, is statistically identical to a popu-
lation without lagged density dependence and subject to
an environment with lag structure. A recent debate32,33 has
shown that this problem is still unsolved. Recently, Ranta
et al.34 also showed how this ambiguity is manifested in
different stability regimes in simple single-species models.

The exact nature of the environmental noise can also
be crucial for population persistence35–37. Halley36 sug-
gested that autocorrelated environmental noise should
increase the extinction risk compared with the hitherto
default white noise. Before the ‘noise industry’ took off
with Halley’s seminal review, Strebel38 had already shown
for a continuous time model that the extinction risk
increases when the product of ‘r’ (per capita rate of popu-
lation growth) and the environmental ‘correlation time’ (a
measure of autocorrelation) are close to unity. Ripa and
Lundberg37, and others subsequently39–41, showed that the
extinction risk is a subtle interplay between the nature of
the noise, the density-dependent structure of the popu-
lation and the spatial structure of the environment. The
nature of the environmental variability might also have
community effects. Caswell and Cohen42 showed that
species coexistence in competitive communities is less
likely in red environments (with spatial structure).

Spatial extension
Population fluctuations can occur at various spatial scales.
The fluctuations in a given location also translate into land-
scape-, region- or even continent-wide patterns of dynam-
ics3,43. One of the most striking large-scale phenomena is
that geographically separate populations tend to fluctuate
hand-in-hand and that synchronous dynamics seem to
weaken the further apart the populations are. The catalogue
of synchronous population fluctuations is increasing,
including not only birds, mammals and insects, but also
plants, invertebrates, fish, protists and viruses2,7. A related
phenomenon is the recent observation of possible travelling
waves across larger geographical regions11,44. It was first
discussed in relation to theoretical models of the spread of
infectious diseases45,46, and later to multispecies interac-
tions in local populations coupled by migration47. Travel-
ling waves indicate temporal and spatial fluctuations of
high and low population density regions in an apparently
organized way. Population waves are generated as a conse-
quence of common density-dependent processes being

locally in differing phases. This might be due to spatial link-
age between the local units, biotic interactions, global and
local noise affecting the subunits differently or a joint
effect of all components. There is an important difference
between true travelling waves and a single wave front
crossing the landscape. A single wave front is often found
in the initial spread of a disease or after exotics have been
introduced to new areas, whereas true travelling waves are
a long-term phenomenon48–50. Recently, much emphasis
has been put on the problem of parsing out the relative

Box 1. Moran’s theorem

Consider two spatially separate populations, both governed by an identical
renewal process. Let the two populations also share identical stochastic
environments, such that they are perfectly temporally correlated with each
other. We then have:

N1(t 1 1) 5 f[N1(t)] 1 ε1(t)

N2(t 1 1) 5 f[N2(t)] 1 ε2(t)

where Ni is the population size at location i, f is the linear renewal function
mapping the population density from time t to t 1 1, and εi is the environ-
mental variability at the two locations. Moran’s theorem3 states that if the
two populations share the same f, then the correlation (ρ) between the two
population sizes will be identical to the correlation between the environmen-
tal variabilities, ρ(N1, N2) 5 ρ(ε1, ε2). Should the renewal function not be iden-
tical or nonlinear, Moran’s theorem would only hold approximately3,4,10. This
more general association between the correlation among populations and
the correlation among environmental variabilities is sometimes called the
Moran effect5,9.

George Leslie proposed a matrix-modelling approach to the Moran effect63.
He assumed two nonconnected populations (both with four age groups) living
in limited environments, proximate enough to share the effect of some exter-

nal random and density-independent
factors. Leslie63 showed that iterating
such a system of two independent
populations [represented here (Fig. I)
as closed diamonds and closed circles,
respectively] initially fluctuating out of
phase will soon lead to synchronous
dynamics as a result of external distur-
bances. The length of the arrows in
Fig. I indicates the strength of the
Moran effect. The data are taken from
Refs 2,63.Trends in Ecology & Evolution
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Box 2. Linearization

Generally, population dynamics is a nonlinear stochastic process. Nonlineari-
ties tend to be complicated to deal with, both when we want to do analytic
stochastic modelling and when analysing data. The way around the problem
is to approximate the nonlinear model with a linear one, for which the math-
ematical and statistical theories are more developed and tractable. Let us
assume that the population process is described as:

Nt 5 f(Nt21,ε t ) (1 )

where Nt is population density at time t and εt is a series of random variables
with identical distributions (mean and variance). Function f specifies how the
population density one time step back, plus the stochastic environment εt, is
mapped into the current time step. Let us assume that the (deterministic)
stationary (equilibrium) value of the population is N* and that ε has mean ε*.
The linear approximation of Eqn 1 close to N* is then:

xt 5 axt21 1 bϕt (2)

where xt 5 Nt 2 N*, a 5 ƒf(N*,ε*)/ƒN, b 5 ƒf(N*,ε*)/ƒε, and ϕt 5ε t 2 ε*

Equation 2 is the Taylor expansion of Eqn 1 where second order terms and
higher are omitted. The statistical properties of this equation are well
known64 and can now be used for model fitting or analytical investigations.
The parameters a and b also have immediate biological interpretations; 
a is the slope of the recruitment function (f ) at equilibrium (determining 
the deterministic dynamics of the population) and b is the sensitivity of the
population to the environmental variability (ε).

I
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importance of migration and the Moran effect (spatially
autocorrelated noise; Box 1), for the production of syn-
chronous population dynamics and travelling waves.

The dispersal of individuals among local populations
(arbitrarily delimited and located) has two important and
immediate consequences for both local and global dynam-
ics. At the global scale, migration can enhance synchrony,
and there is both theoretical and empirical support for this
effect11,15,44,51–53. One interesting example of this is the
recent experimental finding by Holyoak and Lawler54, when
synchronous dynamics were generated by letting protists
and bacteria disperse between connected jars. At the local
scale, migration can be viewed as an additional disturb-
ance event that might destabilize otherwise stable dynam-
ics. Thus far, the direct effect of migration on local popu-
lation fluctuations has mainly been of interest to
theoreticians. Although most natural populations are linked
by migration, there are certainly exceptions. Recently, it
was shown that two isolated, but geographically adjacent,
populations of Soay sheep (Ovis aries) were synchronized
by the Moran effect (correlated environments) alone4. The
interplay between migration and shared noisy environ-
ments is further illustrated by the common observation of

more or less clear synchrony versus distance patterns. 
As the distance between populations increases, the corre-
lation of population densities decreases. This is readily
explained by distance-dependent dispersal51 or spatially
autocorrelated environmental variability6,15. Although 
the theory of distance-dependent synchrony is well
developed, the tests are far from trivial11,44.

Measuring variability
Measuring population variability usually requires long-
term estimates of population density or abundance. How-
ever, this is a rather trivial problem compared with the
challenge of determining appropriate temporal and spatial
scales. When it comes to population synchrony over larger
geographical regions, an interesting invariant property
seems to emerge. For example, the classic Canada lynx
data set appears to retain basic properties regardless of
how Canada is divided into different regions. Choosing the
biologically arbitrary Canadian provinces and their
equally arbitrary geometric midpoints generates the same
synchrony versus distance pattern as more strictly devel-
oped simulation models51. Far from trivial is the choice of
statistics beyond means and variances to describe observed
population time series. For example, finding the periodic
components of the time series by autocorrelation func-
tions (ACF) and partial autocorrelation functions (PACF) is
aggravated by the fact that the samples are not independ-
ent through time because of the time lags in the population
we want to reveal. Analyses in the frequency domain [for
example, by spectral analysis (Box 3)] might be less
afflicted by that problem, but are problematic because of
the rather qualitative interpretation of them. For example,
the recently suggested ‘colour index’28 is not a rigorous
test of the autocorrelation structure of the time series3.

The whole problem of measuring population variability
also inevitably relates to the somewhat philosophical
question of what exactly is measured. The conventional
attitude is that behind the noisy time series lies the ‘true’
biotic process of (density-dependent) births and deaths,
and that this can be revealed once the noise has been
peeled off. Generally, this is what time-series analysis is all
about. The question is whether it is possible to simply dis-
entangle the biotic signal from the noise. One could actu-
ally argue that the manifestation of the population through
its time series is only possible because of the combined
and inseparable birth, death and ‘disturbance’ processes.
The only thing to parse out is then measurement (obser-
vation) error, because stochasticity is a built-in property
of all biological systems. This view opens up new avenues
for studying stochastic systems in ecology, and it high-
lights the fact that deterministic and stochastic modelling
must merge even deeper when it comes to data analysis55.

Model testing
Ecological theory provides us with a suite of possible
explanations for population variability under various cir-
cumstances. The real challenge lies in the confrontation
with data. Historically, two principal approaches emerge
from the literature. The statistical analysis of population
time series is one commonly used method. Standard linear
time-series models [autoregressive (AR) models15] are
commonly used to reveal population cycles and possible
time lags owing to density-dependent regulation in the time
series. Recently, various nonlinear models have also
become more popular; for example, the response surface
technique56 used by Turchin57,58. Recently, more sophisti-
cated tools have been developed. The piecewise linear

Box 3. Spectral analysis

Spectral analysis of a time series is the decomposition of the series into its
frequency components. The meaning of this can be understood by compar-
ing a time series with visible light. White light is a mixture of all colours, each
colour representing a particular wavelength. The inverse of the wavelength
is frequency. Blue light has a relatively short wavelength – it is light of high
frequency. A time series from natural populations is usually a mixture of
many frequencies, but if it is dominated by long wavelengths (low fre-
quency) it is said to be ‘red’ and if it is dominated by short wavelengths it is
‘blue’. If there is a strong cyclic component in the time series, a certain
wavelength, corresponding to the cycle period, is dominating.

A discrete time series x(t), t 5 0, 1, 2,..., L – 1 (L is the length of the series)
has the periodogram Px, which serves as an estimate of the power spectrum
of the underlying stochastic process:

Px (f )5 1/L |X (f ) |2

where f is frequency, X(f ) is the discrete Fourier transform of the time series,
and |...|2 indicates the squared modulus of the transform. The periodogram, or
power spectrum, indicates how much each frequency contributes to the vari-
ance of the time series. Note that a periodogram is calculated from a sample
time series and a power spectrum is a statistical property of a stochastic
process. The power spectrum describes the expected periodogram, but any
single periodogram usually deviates substantially from the power spectrum,
irrespective of the length of the time series. The noisiness of periodograms is
the reason why they are often smoothed in some way to give a more realistic
estimate of the underlying power spectrum. In the ecological literature, the
terms power spectrum and periodogram are often mixed.

Fig. Ia shows two time series: one red, dominated by low frequencies and
long wavelengths (unbroken line); and one blue, dominated by high fre-
quency oscillations and short wavelengths (broken line). Fig. Ib shows the
periodograms of the time series in Fig. Ia. The exact power spectra of the
stochastic processes that were used to generate the time series are also
indicated (thick unbroken line and dotted line).

Trends in Ecology & Evolution
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models [SETAR (Refs 4,55,59,60)], similar to both linear and
nonlinear standard methods, have been used to handle
putative underlying nonlinearities in the biological process.
However, the mechanistic modelling approach does not
begin with a statistical description of data. Instead, theories
of explicit population processes, such as per capita births
and deaths, are used to generate the population dynamic
phenomena (e.g. cycles) that we observe in nature. The
parameters of the models are then estimated from (poss-
ibly independent) data and the resulting dynamics are com-
pared with real time series. The recent review by Kendall 
et al.61 is an example of the synthesis of both approaches.

In both approaches discussed previously, there is an
‘error’ to be taken care of. The variance not explained by
the models stems from measurement error, or environ-
mental or demographic stochasticity not accounted for by
the models. If environmental and demographic stochastic-
ity become integral parts of the model itself, this problem
can be partly reduced. But, there is a risk that this only
gets us out of the frying pan and into the fire, because then
we have to have reliable data on these processes and the
mechanisms for how they interact with the biology of the
organisms, which is far from trivial62.

To resolve such problems, which will necessarily be of
fundamental importance in future work on population vari-
ability, we require a sophisticated combination of stochas-
tic, statistical and mechanistic modelling approaches. This
work has a long and successful history, and it will continue
to be at the core of ecology.
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Upon first exposure to a
newborn, male rats (Rattus
norvegicus) attack and con-

sume them. However, repeated
exposure to young pups elicits
parental behavior (e.g. licking,
retrieval and a nursing posture
over the pups) over a period of
several days. During this transfor-
mation from killer to caregiver,
hormones involved in maternal
behavior do not change and
endocrine manipulations, includ-
ing castration, have little effect.
Thus, initially, hormones did 
not appear to be involved in 
mammalian paternal behavior1.

Instead, evidence supporting
a role for hormones in both the
onset and the maintenance of
male parental behavior has come
consistently, but slowly, from
studies of naturally paternal
species. Direct paternal care is
rare in mammals but is found 
in some species; for example, 
callitrichid primates that bear twin
offspring (Callithrix and Saguinus
spp.), and rodents, including prairie voles (Microtus
ochrogaster), California mice (Peromyscus californicus),
Mongolian gerbils (Meriones unguiculatus) and Djungarian
hamsters (Phodopus campbelli). In each case, both field
and laboratory data support a reproductive payoff to 
the paternal male, in terms of increased female fertility 

and improved offspring survival
and/or growth2,3. Paternal behav-
ior includes all aspects of mater-
nal behavior except lactation
(and at least one bat species is
capable of lactation4) and can
include midwifery during the
birth5 (Fig. 1). It also appears to
involve activating existing neural
circuits leading to maternal
behavior.

Sexual dimorphism?
Hormones, including estradiol,
progesterone, testosterone, corti-
sol, prolactin, vasopressin and
oxytocin, are involved in the onset
and maintenance of mammalian
maternal behavior (Table 1).
Except for a small number of
genes on the Y chromosome,
male and female mammals have
the same DNA. Sexual dimor-
phism in neuroendocrine and
endocrine pathways is usually
minimal6, except for neuro-
endocrine circuits leading to
stereotypical sexual behavior.

Thus, rather than selecting for novel pathways to elicit
paternal behavior, laws of parsimony suggest that natural
selection should activate pre-existing maternal neural and
endocrine circuits. Current hypotheses assume that this
homology will extend to neuroendocrine circuits involved
in paternal and maternal behavior 6–8.

Behavioral endocrinology of
mammalian fatherhood

Katherine E. Wynne-Edwards and Catharine J. Reburn

Mammalian fatherhood involves a 

muted version of the maternal

experience. In spite of previous

assumptions to the contrary, 

hormones influence mammalian 

paternal behavior. Naturally paternal

males experience dynamic changes 

in the same hormones involved in

maternal behavior and these 

hormones have access to the same 

brain pathways. Men becoming 

fathers for the first time are similar 

to their female partners too. These 

recent studies are still correlational, 

but promise to illuminate maternal

behavior and to biologically 

validate the experiences of 

involved fathers.

Katherine Wynne-Edwards and Catharine Reburn are
at the Dept of Biology, Queen’s University, Kingston,

Ontario, Canada  K7L 3N6
(wynneedw@biology.queensu.ca;

reburnc@biology.queensu.ca).

464 0169-5347/00/$ – see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0169-5347(00)01972-8 TREE vol. 15, no. 11 November 2000


